Shifted quadratic Zeta series

نویسنده

  • Anthony Sofo
چکیده

It is well known that the Riemann Zeta function ζ ( p ) = ∑∞n=1 1/np can be represented in closed form for p an even integer. We will define a shifted quadratic Zeta series as ∑∞ n=1 1/ ( 4n2−α2)p . In this paper, we will determine closed-form representations of shifted quadratic Zeta series from a recursion point of view using the Riemann Zeta function. We will also determine closed-form representations of alternating sign shifted quadratic Zeta series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hecke’s integral formula for quadratic extensions of a number field

Let K/F be a quadratic extension of number fields. After developing a theory of the Eisenstein series over F , we prove a formula which expresses a partial zeta function of K as a certain integral of the Eisenstein series. As an application, we obtain a limit formula of Kronecker’s type which relates the 0-th Laurent coefficients at s = 1 of zeta functions of K and F .

متن کامل

Action of Hecke Operators on Maass Theta Series and Zeta Functions

The introductory part contains definitions and basic properties of harmonic theta series, Siegel modular forms, and Hecke operators. Then the transformation formulas are recalled, related to the action of modular substitutions and regular Hecke operators on general harmonic theta series, including specialization to the case of Maass theta series. The following new results are obtained: construc...

متن کامل

A Quadratic Tail Of Zeta∗

Quadratic trigamma functions and reciprocal binomial coeffi cients sums are investigated in this paper. Closed form representations and integral expressions are developed for the infinite series.

متن کامل

Zeta Functions for Equivalence Classes of Binary Quadratic Forms

They are sums of zeta functions for prehomogeneous vector spaces and generalizations of Epstein zeta functions. For the rational numbers and imaginary quadratic fields one can define these functions also for SL(2, ^-equivalence, which for convenience we call 1equivalence. The second function arises in the calculation of the Selberg trace formula for integral operators on L(PSL(2, (!?)\H) where ...

متن کامل

About the Cover: Zeta-functions Associated with Quadratic Forms in Adolf Hurwitz’s Estate

The first published proof of key analytic properties of zeta-functions associated with quadratic forms is due to Paul Epstein [2] in 1903 (submitted January 1902). The corresponding name “Epstein zeta-functions” was introduced by Edward Charles Titchmarsh in his article [15] from 1934; soon after, this terminology became common through influential articles of Max Deuring and Carl Ludwig Siegel....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004